finviz as an alternative to Yahoo finance

I’ve been a long time user of yahoo finance, but the latest redesign really ended it for me.  I’ve now moved over to

I primarily used yahoo for tracking individual stocks in my IRA and taxable portfolios. I found it much easier to record trades on Yahoo finance rather than constantly logging into my broker’s website. I could easily keep track of daily and total gains/losses and also view relevant news stories. Finviz has similar functionality available for free.

Finviz Elite costs $300/year (or you can try it with a month to month plan for $40/month).   It’s really a nobrainer for anyone who manages a portfolio over $100,000.  If you hired a manager, it would cost about 1%-2% per year in fees.  If you are managing your own portfolio, it’s perfectly reasonable to allocate something like 0.5% for tools to help you identify and track your investments. You will be able to write these costs off as a tax deductible investment expense.

Finviz Elite Features

  • Real time data
  • Advanced charts suitable for technical analysis
  • Backtests

If you like technical analysis, you’ll love the finviz elite backtest tool.  It allows you to test the historical results of specific strategies that have quantifiable entry and exit points.

For instance, here’s a simple trading strategy based on the money flow index (MFI):

  • Buy SPY when MFI crosses below 25, then hold this position until SPY’s MFI crosses above 60.

Finviz elite allows you to test this strategy against historical data (back to 1996) and with realistic assumptions (trading costs).


Here’s the results:

First the chart.  It compares the return from the above strategy to a buy and hold SPY strategy.  You can see that the MFI trading strategy had a much better return.

Chart from finviz backtester

Next the detailed statistics for the strategy.  Here, the strategy is compared to both the market weighted SPY and an equal weight portfolio of the stocks that make up the SPY index.

Statistics from finviz backtester

In addition to the money index, you can use just about every momentum, volume and volatility indicator possible.  Finviz elite also has a about five dozen pattern recognition indicators.  I’ve listed them all below.

Momentum Indicators:

  • 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
  • Absolute Price Oscillator
  • Aroon DOWN
  • Aroon Oscillator
  • Aroon UP
  • Average Directional Movement Index
  • Average Directional Movement Index Rating
  • Balance Of Power
  • Chande Momentum Oscillator
  • Commodity Channel Index
  • Directional Movement Index
  • Minus Directional Indicator
  • Minus Directional Movement
  • Momentum
  • Money Flow Index
  • Moving Average Convergence/Divergence
  • Plus Directional Indicator
  • Plus Directional Movement
  • Rate of change : ((price/prevPrice)-1)*100
  • Relative Strength Index
  • Stochastic
  • Stochastic Relative Strength Index
  • Ultimate Oscillator
  • Williams’ %R


Pattern Recognition:

  • Abandoned Baby
  • Breakaway
  • Closing Marubozu
  • Concealing Baby Swallow
  • Counterattack
  • Dark Cloud Cover
  • Doji
  • Doji Star
  • Dragonfly Doji
  • Engulfing Pattern
  • Evening Doji Star
  • Evening Star
  • Gravestone Doji
  • Hamme
  • Hanging Man
  • Harami Cross Pattern
  • Harami Pattern
  • High-Wave Candle
  • Hikkake Pattern
  • Homing Pigeon
  • Identical Three Crows
  • In-Neck Pattern
  • Inverted Hammer
  • Kicking
  • Kicking – bull/bear determined by the longer marubozu
  • Ladder Bottom
  • Long Legged Doji
  • Long Line Candle
  • Marubozu
  • Mat Hold
  • Matching Low
  • Modified Hikkake Pattern
  • Morning Doji Star
  • Morning Sta
  • On-Neck Pattern
  • Piercing Pattern
  • Rickshaw Man
  • Rising/Falling Three Methods
  • Separating Lines
  • Shooting Star
  • Short Line Candle
  • Spinning Top
  • Stalled Pattern
  • Stick Sandwich
  • Takuri (Dragonfly Doji with very long lower shadow)
  • Tasuki Gap
  • Three Advancing White Soldiers
  • Three Black Crows
  • Three Inside Up/Down
  • Three Outside Up/Down
  • Three Stars In The South
  • Three-Line Strike
  • Thrusting Pattern
  • Tristar Pattern
  • Unique 3 River
  • Up/Down-gap side-by-side white lines
  • Upside Gap Two Crows
  • Upside/Downside Gap Three Methods

Volatility Indicators:

  • Average True Range

Volume Indicators:

  • Chaikin A/D Oscillator

Top 3 Infrared Thermometers for non-contact temperature measurement

Three distinct classes of non contact infrared thermometers exist:

  • Low priced, budget models.  These typically have fixed emissivity values and measure temperature at one point. One of the better models in this class is the Etekcity Lasergrip 630
  • Mid range. These are professional tools. They have the ability to store measurements, chose emissivity values, and provide a USB connection to download stored data.  The Fluke 566 is representative of this class.
  • Imaging Thermometers. These provide an actual image, like a photograph, of the temperature. Two examples of instruments in this class are the FLIR TG165, a standalone infrared imager, and the FLIR ONE, which plugs into your Android or iPhone and provides you with an infrared image on your phone screen.

Theory of Operation

Infrared thermometers work by measuring the amount of infrared light emitted at different wavelengths.

If an object is hot enough, it glows red-hot and is visible to the eye.  This red glow starts to become visible to the naked eye at about 900 degrees F.  Things that are at a temperature below 900 degrees F will also glow, but this glow is imperceptible to the human eye.  Instruments, however, can record it.  That is the basis of an infrared thermometer.

Infrared thermometers work by focusing light from an invisibly glowing object onto a sensor and measuring the intensity of that glowing light.

Two factors determine how bright an object will glow: temperature and emissivity.  The thermometer has no way of measuring the emissivity of a surface.  Most use a default emissivity value of 0.95, which is very close to the emissivity value of  many common surfaces including: asphalt, asbestos, paint, plastic, rubber, wood, and water.

Don’t use an infrared thermometer to measure the temperature of bare metals like copper, lead, aluminum, or iron unless you read the manual and understand how to change the emissivity on the meter.  On cheaper meters, you cannot change the emissivity.

You can use an infrared thermometer with a fixed emissivity value of 0.95 for painted metals, but bare metals will give a bad reading unless you change tell the meter what type of material you are pointing at. If you cannot change the emissivity levels, you can instead put some black electrical tape on the metal’s surface and measure the temperature of the black electrical tape to get an accurate reading.  The surface that you point the thermometer at is what matters, not what’s behind the surface.


Imaging Detector Technology

The technology behind today’s infrared imaging thermometers was classified military technology up until the early 1990’s. Before these MEMS based microbolometers, infrared imaging cameras required cryogenic cooling, usually using liquid nitrogen.

The infrared imaging camera’s detector is  an array of microbolometers.  A microbolometer is a tiny piece of material  thermally isolated from its substrate.  A lens focuses infrared light onto the microbolometers and this light causes the tiny piece of material to increase its temperature.  This increase in temperature, although also small, leads to a change in its electrical properties.  Sensitive electronics can read this change in electrical properties and interpret it as the temperature of the object from which it originates.  A computer synthesizes the temperatures of the array of microbolometers into an image.

The FLIR TG165 is built upon the FLIR Lepton camera package.  The Lepton is an 80×60 array of microbolometers sensitive to longwave infrared (8 to 14 microns) with a 17 micron pixel size.  You can get the Lepton from Digikey.

Seek also makes thermal imaging sensors.  They have a 206×156 pixel sensor they pack into cameras that attach to your smartphone.

The FLIR TG165 is built upon the Lepton sensor